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AbslracL Under a weight Conservation condition when q is not a root of unity, Yang- 
Barter relations are solved without the auumption lhat the upper-left triangle of each 
sub-block of the S matrix of the braid group representation (BGR) vanishes. A general 
form of BGR associated with E , ,  C. and D, is oblained and shown to construct link 
invariants. The many-to-one correspondence between BCRS and link invariants is given. 

1. Introduction 

Due to the importance of the Yang-Baxter equation (YBE) in the study of quantum 
groups, knot theory and integrable models in quantum field theory and statistical 
mechanics etc [la], the study of the solutions of the YBE becomes an interesting 
subject. There have been several approach to  the solutions of the YBE in recent years 
[7-lo]. One of them follows the strategy that to solve Yang-Baxter relations (briefly, 
YBR means parameter-independent YBE) under a weight conservation condition [ll], 
then to Baxterize them [lo]. When solving YBR, the upper-left triangle of each non- 
vanishing sub-block is usually assumed to be null. However this assumption is not 
required by Markov properties which are compatible with YBR [ll]. 

In this paper, starting from the structure of the BGR under a weight conservation 
condition, we solve YBR without the assumption that the upper-left triangle of each 
non-vanishing sub-block is null. In the next section, a brief illustration of notation 
of the extended Kauffman diagram is given. In section 3 we give a strategy to write 
out all possible Y B B  according to the diagram structure of the BGR and actions of 
the permutation group S,. A sequence of solutions of YBRs associated with E,, 
C, and D, are obtained. The results are connected with the so-called non-srandard 
BGR through actions of a permutation group SN. In section 4, we show that link 
polynomials can be defined from the BGR obtained. The correspondence. relationship 
between BGRS and link polynomials are discussed. 

2. On notation of the extended Kaufiman diagram 

In this section, we briefly recall and illustrate the notation of the extended Kauffman 
diagram [5 ] .  One advantage of diagrammatic notaiion is that various YBRs can be 
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written down conveniently. Another advantage is that the polynomial for a given link 
is easy to calculate by expanding each crossing (intersection) as 'state' components 
multiplied with writhe factors. 

In diagrammatic form, the S matrix of the BGR and its inverse are represented as 

X S-L:= X S:= 

i.e. 

a 

yj:= xb 
c d  

Then the unitary condition an 

a b  

(s-I):j:= /y 
c d  

'BR are depicted respectiw 

a 

C c d  c d  

and 

a b c  

d e f  d e f  

(2.3) 

where an inner line connecting legs of two crossings implies the summation over the 
repeated labels on the legs, and a simple vertical arrow stands for a unit matrix i.e. 

b 

Furthermore, some special components of S matrix Si,., Si; (a < b ) ,  
S$ (a > b) and Sb"," ( a  # b) are denoted respectively by the following Kauffman 
'state' diagram notation: 

where the labels connected by the tip and tail of an arrow are supposed to be equal; 
if two full lines are connected by a wavy line, it is supposed that the sum of labels on 
one full line equals that on the other full line (in (2.4) a wacy line with a dot below 
stands for a < b and that with a dot above for a > 6). 
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Obviously, other kinds of components of the S matrix need to he given 
Referring to the principle contained in (2.4), a simple diagrammatic notation. 

reasonable notation is 

a b  a b - etc. x and A 
C d C d 

The left one stands for Srj when a # c, a # d hut a + h = c + d and the right one 
for the case when a #  c,a # d and a +  b #  c + d .  

In order to simplify the discussion of YBR in the next section, it is not necessary 
to distinguish the first three situations of (2.4). We will use the following diagram 
notation: 

a b  a b  

where the left includes a = b,  a < h and a > b, and the right includes 
a < b and a > b only. 

One may notices that any matrix can he expressed as a linear combination of the 
'states' in (2.4) and (2.5). However it is very difficult to solve YBR starting from a 
general matrix. The weight conservation condition provides a compatible method to 
eliminate many 'states' (i.e. restrict available components of the S matrix to be null) 
before solving YBR. The weight conservation condition when q is not a root of unity 
is the starting point of the following discussion. 

3. Braid group representations 

In [ll], we have given the structure of the BGR under the weight conservation 
condition for the cases of fundamental representations of E,, C, and D, 

where the sets of labels are C = { 2 n ,  7.11 - 2 , .  . . , - 2 n  + 2 ,  -2n) for €3,; E = 
{2n - 1,2n - 3 , .  . . , -2n  + 3, -211 + 1) for C,, and D,, q t  = 0 when a * 6 = 0, 
and = q:: and p :  = p:-" due to transpose symmetry. If the notation of (2.6) is 
adopted, (3.1) becomes 

where ua := tu&, w i t h  := 
coefficients in (3.2) should he determined by YBR. 

( a  < 6) and U'!,, := with ( U  > b ) .  All the 
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3.1. Yang-Barter relations 

Once the labels on the top and bottom of diagram (2.3) are given, one can write 
out a concrete equation (YBR). so a concrete YBR can he denoted symbolically by 

(' '). Because of the third term in (4.2), discussions of YBR in these cases 
d e f  

are more complicated than in the case of A ,  [12]. We need to consider not only (z b c  c )  ( a  + 6 # 0, 6 + c # 0) and those with a permutation of the bottom 

b -a b - b  b b a  
labels, hut also (: 1: i), ( 6  -a :), ( z  - c  c ), (: --c a ) 3  (_", < b )  
and those with a oermutation of the bottom labels. 

Due to the symmetry properties of (3.2), it is not necessary to depict diagram 
equations in all possible situations. Here YBR is invariant under interchange of the 
top and bottom labels. The YBR whose free labels are the image of others through a 
vertical mirror can be obtained from the original ones by 

(3.4) -a - b w: - w;-a qr - q - b  - 

Using our procedure for writing YBR in the situations of (z :) ( a  + 6 # 
0, b + c # 0) associated with the elements of S,, we obtain what we have obtained 
in the case of A ,  (see [12]-here exclude a + 6 = 0 and 6 +  c = 0). These equations 
have nothing to do with the coefficients 4;. The solutions are easily found: 

(3.5) 

where 6, = i l  and x ~ , ~  = 1 or 0 satisfying 

X a , b  + X b , a  = - 6 a , b  ' (3.6) 

Meanwhile x := (x., 
permutation group SN i.e. 

are related to a primer matrix 2 via any element of the -,- 

x'= M < ( 7 r ) g M ( r )  7r E s, (3.7) 

where M ( r )  E Mat(S,), N = 271 + 1 for E,, N = 2n for C,, and D,. The 
definition of the primer matrix is that 

In the following we discuss the cases (: 1: i), (: --c : b )  and 

( - e  a 
). The other two cases can be written out directly by using (3.4). Letting 

S, act on (: 1," !) we have the following diagram equations: 

= 1 for a < b .  ? a , b  = 0 for (I 2 b. 
b 

b a - b  
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a - a b  a - a b  a - a b  o - a b  a - a  a 

a - a b a - a b  a - a b  

a - a b  a - a b  a - a b  a - a b  

a - a b  a ~ b  a - a b  

a - a b  o - a b  a - a b  

-a b a  

From the above diagram equations, we obtain 

(3.8) 
a b -  

w z + b q b  qa - o 
a - e  b 

pt(w;awk-a + w:+bwt - w : - = w , " + b )  + c q e q a  zue+b = 0 

n o b  

b a - b = o ,  

W a + b q b q - a  = 

P b - a  9- b 4, 

Obviously ( z  _", ;*) is equivalent to ( z  1:). As the latter is the result of 
ra E S, acting on the bottom labels of the former, we need only consider the 
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situations associated with the right co-set representations, where S, is decomposed 
with respect to the right co-set of subgroup (id, rZ3) i.e. ( e  1:) which is and (-", a b - b  ). Similarly, as ( -c  b n - b  ) is equivalent to 

r13 E S3 acting on the bottom labels of ( -? a " -' * 1. we only need to consider 

b - b  (1: --c J(: _", :b) 

\ " I  - I  
b a - b  a - 6  b a - b  ), (-bc a ) and ( a  --E e ). These YBRS can be written out after 

depicting the related diagram equations carefully. For brevity we omit them here. 
Because 0 E f! for g,, there are several c&es which are not contained in the 

a 0 0  0 0 0  0 0 0  

(: I: which should be added to the case of E , .  For example 

0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  

(: 9 :) : x--1 
_. + &{< + x-1 M( 

- 0 0  - a a O  - 0 0 0  x u 0  - a 0 0  

tells us that 

(3.9) 
0 q , [ ( w p -  P I X I  + q11w3wO" - w:) t q"P,-aw!& = 0 .  

3.2. Braid group representations 
Following the procedure in above discussion, we write out all YBRS, which involves a 
large number of equations. We find that the number of those equations are decreased 
dramatically after taking 

q;w;+& = 0 .  (3.10) 
Then solutions which are compatible with (3.5) are found without much difficulty. 
The following are the results of the remainder coefficients beyond (3.5): 

Po" = 6,q-6", 4; = - & , b  ( 4 -  9-')<; 

WO" = xL,a(q - q-l)(l - 4;") (a # 0) 

(- 1) 1 / Z U ; ' / '  n U ; h o , r h c  .6 for B, 

@; := e ( a b ) ~ ,  U ,  ub , u ; ~ ~ , = ~ ' , ~  for cn (3.11) 

e € (  

- B ( - a h )  -,I2 -1/2 

C € t  I U ~ - a ~ j u , i / i u b i / i  TI U ; ~ a , c ~ c , b  for D, 
e € [  

I 
where u0 = 6, for B,, f is a fixed label such that s-,,.~,,, = 0 for any e E C ;  
S(z) is the step function and t (z)  is the sign function. Since p i  = p;" (transpose 
symmetry) and p ;  = bag-", then we must take 

6, = 6-, . (3.12) 

Likewise, q; = q:: requires that 

These relations do not appear in the case of A,&. 
x - a , - b  = s b . 0  ( a  f b # 0) .  (3.13) 
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4. Link invariants 

In this section we will show that link polynomials can be constructed from some of the 
above BGRS. We consider the BGRS in which x = ( x , , ~ )  are transformed from the 
primer matrix 2 via actions of a subgroup of S, instead of S, itself. This subgroup 
is supposed to keep relations (3.12) and (3.13) and denoted by S'. Obviously, the 
elements r E S, satisfying . (-a) = - .(a) Va E e - {0} guarantee relations (3.12) 
and (3.13) at least. 

Link polynomials are defined by the following formula 1131: 

where str(M) := tr(XHM), '7f = n" '@~,  V ;  = 6,6; and H = n"'@h; g(A) 
stands for the matrix representation of A E 8,. The definition of a diagonal matrix 
h is 

h:= M C ( d ) h M ( * ' )  T ' E S  c S, (4.2) 

and 

6b a ~ - 6 o r ( b ) t 6 a - 2 $ 2 , 6 ,  for B, 

for C, (4.3) h = {  6,q a f i t61r (b) t6b-2C~; '6 .  

6; q ~ - 6 > f ( b ) t 6 b - 2 E ~ ; 1 6 c  for D, 

where we have adopted the notation 

p := trq = 6, . (4.4) 
b E t  

The S matrices of BGRS for B,, C, and D, have three distinct eigenvalues: 
XI  = q ,  A, = -q-' for B,, C, and D, but A, = q-j'tl for B,, A, = -6,q-'-6' 
for C,, and A, = 6,q-fit61 for D,. Then cubic reduction relations of BGRS for these 
cases can be written out. After calculating T and i which are determined by the 
requirements of Markov move 11, i.e. 

(4.5) I abhb - i x6bSzgbhi  = r c6b(s- ab b - 
b b 

where r and i are independent of a,  we obtain from definition (4.1) and reduction 
relations of BGRS the following cubic skein relations: 

B, : q Y r - l ) p  t z  - (,y - q" -2  + l)Ptl - ( q - p  - q - f i + Z +  l )P 0 

+ q-*(fl-l)P-l = 0 (4.6) 

+ 6 , (q - f i -6 f -1  - Q - ~ - 6 1 + 1 -  6 ,) p - 6, q - ~ ( ' ~ + 6 f ) p  - I  - - 0 
(4.7) 

c, : q2(~+6,)p ( q f i t b , t l  - p t b I - 1  - 6 p 
t 2  - 9 J )  + I  

D, : q 2 ( ~ ' - 6 f ) p  tz - ( q / l - b f + l  - 4''-6'-1 + 6 J ) p t l  

- 6,(q-Ff6f-1 - q - f i + 6 f + 1  + &,)Po + ,5Jq-2('"6f)p-1 = 0 ,  (4.8) 
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It is known that the Jones polynomial and its two-variable extension (ie. HOMFLY 
polynomial) obey the quadratic skein relations, which are obtained via C* 
algebra [14], and are shown to relate to the braid group representation of the A,, 
case [12]. The polynomials obtained above obey the cubic skein relation and are 
certainly the hierarchies of the Kauffman polynomial [5]. 

Let us observe the polynomials of an unknotted single loop (up to a scalar 
multiplier ( 7 .  + I - ~ L - ~ )  

~(0) = t r ( g ~ ‘ ( d ) i L ~ ( r ’ ) )  = tr(,,jil). (4.9) 
From (4.3) and (4.9), we find that 

B n .  ’ P ( 0 )  = q’-’ + 4’-4 + . . . + q + 1 + q-’ + , . . + + q-’” (4.10) 

(6, = 1) 

(6, = -1) 

q’ + p - 2  + . . . + q 2  + q - 2  + . . . + p + 2  + p‘ 
q’-2 + 4 - 4  + . . . + q= + 2 + 4 - 2  + . . . + q-’+2 

(4.11) 
{ c,: P(O)= 

( ( p - 2  + q’-4 + . . . + q2 + 2 + q-2 + . . . + p + 4  + p t 2  

(4.12) 

From the cubic skein relation and the polynomial of a single loop, all the concrete 
polynomials for the link are determined. According to the results of skein relations 
and polynomials of a single loop we conclude that (i) B hierarchy: a variety of 
BGRS related to Lie algebra B, having the same p ( p  < n )  and the so-called 
standard BGR related to B+,),* define the same polynomials. (ii) C, and D, 
hierarchy: BGRS related to C, with 6, =, 1 (6, = -1) and those related to D, with 
6, = -1 (6, = 1) having the same p define the same polynomials as those defined by 
the so-called standard BGR related to CPl2 (D,,/?). So the correspondence between 
BGRS and polynomials is many-to-one. The BGRS having the same polynomial may 
have very different sizes. 

5. Conclusions and discussions 

In the previous sections, we solved YBRS under the simplification of weight 
conservation condition and transpose symmetry without the assumption of upper- 
left triangle of each non-vanishing sub-block being null. The weight conservation 
condition and transpose symmetry are respectively requirements of the Markov move I 
for a diagonal h and a sufficient condition for a third type of move [lo]. This 
simplification lets us conveniently solve YBRS in terms of the Kauffman diagrammatic 
technique. Whether the BGR obtained in such a way can define link invariants 
depends only on whether the property of the Markov move I1 can be guaranteed. 

We can show that the BGRS obtained in the previous section give rise to 
representations of the Birman-Wend algebra. Then these BGRS can be Baxterized to 
be solutions of parameter-dependent Yang-Baxter equation, i.e. R( T) matrices. 
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Finally, we would like to make two remarks. If the transpose symmetry is given 
up, one will obtain multiparameter solutions of YBRS. If we consider that q k a 
root of unity, the weight conservation condition proposed in our previous paper will 
become a wider condition, related to cyclic representations of the braid group. 
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